
 DEPTHDEP IN

And other stuff too

Bypassing DEP is not new

Bypassing DEP is not new
‘ret2libc’ DEP bypass
before DEP was even implemented natively in Windows

http://packetstormsecurity.org/0311-exploits/rpc!exec.c

Released in 2003
NtAllocateVirtualMemory()
Memcpy()
NtProtectVirtualMemory()

Still most public exploits do not bypass DEP
Largely because of default desktop DEP settings
Enable DEP will prevent the majority of public exploits

This is changing
With the current release of methods and techniques
Soon most exploits will bypass DEP

So... Does DEP Work?

DEP 101

Data Execution Prevention
Prevents the execution of code from pages of memory that
are not explicitly marked as executable
Enforced by hardware
Attempts to run code from a non executable page result in a
STATUS_ACCESS_VIOLATION exception

What does it protect?
DEP is always enabled for 64-bit native programs.
Configuration specifies if DEP is enabled for 32-bit
programs.

Opt-In
Process must explicitly decide to
enabled DEP

Opt-Out
Every process is protected unless
explicitly decides to disable DEP

Always On
All process are always protected
and can’t be disabled

Always Off
Disable DEP for everything

DEP Modes

Memory Protection Mechanisms

DEP Protection Mechanisms

XP
SP2, SP3

2003
SP1, SP2

Vista
SP0

Vista
SP1

2008
SP0

Win7
SP0

DEP Support yes yes yes yes yes yes

Permanent DEP no no no yes yes yes

Default OptOut no yes no no yes no

Default AlwaysOn no no no no no no

That's a lot of no

If DEP Is Not Enabled, Then There Is Nothing To Defeat

/NXCOMPAT
Linker option use to specify that this process wants DEP

SetProcessDEPPolicy()
Called by process to Opt In/Out and set permanent DEP

Uses Permanent DEP?
 SetProcessDEPPolicy(PROCESS_DEP_ENABLE)

DEP setting can not be changed after this call

Opting In/Out

IE 7 IE 8 FF 3 Safari 5

Permanent DEP no yes yes yes

Independent of OS settings

Disable DEP
Essentially this is Opt Out for a process

NtSetInformationProcess()
Skape and Skywing ret-to-libc to deactivate DEP

SetProcessDEPPolicy()
On XP SP3 and later

Will not work against
/AlwaysOn
Permanent DEP

Disable DEP vs Bypass DEP

NtSetInformationProcess(
NtCurrentProcess(), // (HANDLE)-1
ProcessExecuteFlags, // 0x22
&ExecuteFlags, // ptr to 0x2
sizeof(ExecuteFlags)); // 0x4

From Now On Lets Just Assume /AlwaysOn Permanent DEP Is Enabled

Bypass DEP
Allocate executable memory to contain shellcode

Various very clever browser attacks

Disable DEP vs Bypass DEP

Attack Defense

.Net User Control DEP Bypass Internet Explorer 8

Actionscript Heap Spray Flash 10 (DEP/ASLR)

Java Heap Spray No longer RWX

JIT-Spray Flash 10.1. pages with
code are encrypted

See the AWESOME work released at XCon2010
Defeat Win 7 Browser Protection - XCon2010_win7

Bypass DEP with ret2libc
Use executable instructions from the application
Use executable instructions from other dlls
Return Orientated Prog

Bypass DEP

CLSID
Reference to .dlls
Loaded in IE

Vista IE7 DEP/ASLR Bypass

C:\Windows\System32\
infocardapi.dll

Some Of These Are Not
ASLR/DEP Aware

Is safe to run

Will load infocardapi.dll

Use the stack to control flow
Function address
Parameters

Gaining EIP

STACK

...

RETURN ADDRESS1

PARAM1

PARAM2

RETURN ADDRESS2

Overwrite RET
directly

EIP through SEH overwrite
Well known technique
No more pop,pop, ret
Other pointers to SEH record

Point ESP to our buffer

Reference SEH record

Gaining EIP

STACK

...

..

..

Ptr To SEH Record

XXXXXXXX

XXXXXXXX

XXXXXXXX

Ptr To Next SEH Record

Ptr To SE Handler

XXXXXXXX

XXXXXXXX

Overwrite SEH
directly

ESP when
handler called

ESP +8 +14 +1C +2C +44 +50

EBP +C +24 +30 -04 -0C -18

ADD ESP,###
RETN

MOV ECX,[EBP+0C]
CALL [ECX]

EIP through vTable overwrite
Common in browser exploits

Application function call

Need to control the stack

Gaining EIP

HEAP

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

vTable Overwritten

MOV EAX,[ESI]
CALL EAX

PUSH ECX
POP ESP
RETN

ESI points to vTable

Exploit points vTable to here

Now we are in control of the stack
Controls execution flow into existing code blocks
Not executing any shellcode yet

Find out where we are
Need to know our ESP address, for local addressing

Controlling The Stack

PUSH ESP
POP EAX
RETN

MOV ECX,DWORD PTR FS:[0]
..
RETN

Load ESP directly Load ESP indirectly via SEH

The easy way
Use LoadLibrary() to retrieve DLL over webdav/smb
DLL is loaded into memory and executed
No memory protection changes required

DEP Bypass

LEA EAX,DWORD PTR SS:[ESP+40]
PUSH EAX
CALL DWORD PTR DS:[<&KERNEL32.LoadLibrary>]

Return to here

Points to our
string

Calls LoadLibraryA()

Create an executable heap to use
HeapCreate(HEAP_CREATE_ENABLE_EXECUTE)
HeapAlloc()
Memcpy
Return to buffer

HeapCreate ()

HEAP

...

..

..

PAYLOAD

FindSelf

PAYLOAD

FindSelf

HeapCreate()

HEAP

...

..

HeapChunk

PAYLOAD

FindSelf

HeapCreate()

HeapAlloc()

HEAP

...

..

HeapChunk

PAYLOAD

FindSelf

HeapCreate()

HeapAlloc()

Copy

ShellCodez

HEAP

...

..

HeapChunk

ShellCodez

PAYLOAD

FindSelf

HeapCreate()

HeapAlloc()

Copy

Ret

ShellCodez

Create an executable heap to use
HeapCreate(HEAP_CREATE_ENABLE_EXECUTE)
Increase Returned Heap Ptr
Memcpy
Return to buffer

HeapCreate () (Improved)

HEAP Base

...

..

HeapChunk

Pointer Returned From
HeapCreate()

Increase Pointer To Valid
Heap Space

Common In Metasploit Modules By jduck

Allocate executable memory
VirtualAlloc(NULL,size,PAGE_EXECUTE_READWRITE)
Memcpy
Ret to buffer

VirtualAlloc ()

Alloc’d SpacePAYLOAD

FindSelf

PAYLOAD

FindSelf

VirtualAlloc()

Alloc’d Space

Shellcodez

PAYLOAD

FindSelf

VirtualAlloc()

Copy

Shellcodez

Alloc’d Space

Shellcodez

PAYLOAD

FindSelf

VirtualAlloc()

Copy

Ret

Shellcodez

Allocate executable memory
VirtualAlloc(findself(),size,PAGE_EXECUTE_READWRIT
E)
Ret to self

VirtualAlloc () (Improved)

When Committing Memory, VirtualAlloc() Will Modify The Protection Type Of
Existing Memory Pages

VirtualProtect(PAGE_EXECUTE_READWRITE)
Pass the address of payload
Update to make memory executable
Execute it

WriteProcessMemory()
Write payload to existing executable memory
Can be at the end of WriteProcessMemory()
Payload executed

Memory Protection Attacks

WriteProcessMemory() Will Modify The Protection Type Of
Existing Memory Pages To Be Writeable

CreateFileMapping()
CreateFileMapping(-1,0,
PAGE_EXECUTE_READWRITE)
MapViewOfFile()
MemCpy()
Ret

Others
System()
WinExec()
Etc..

Other Attacks

So... Does DEP Work?

Creates A New Memory Backed Map Of The
Existing Process

ROP requires known addresses
ASLR is a problem, only if it is enabled for everything
coff Adobe

Firefox 3.6.3

Safari 5

ASLR In Browsers

OS DLL Address?

Vista Nspr4.dll 4.8.3 0x10000000

Windows 7 Nspr4.dll 4.8.3 0x10000000

OS DLL Address?

Vista libdispatch.dll 1.109..4.1 0x10000000

Windows 7 libdispatch.dll 1.109..4.1 0x10000000

Shockwave anyone

Java perhaps

3rd Party Components

Browser OS DLL Address?

IE 7 Vista DIRAPI.dll 11.5.7r609 0x68000000

IML32.dll 11.5.7r609 0x69000000

SWDir.dll 11.5.7r609 0x69200000

IE8 Windows 7 DIRAPI.dll 11.5.7r609 0x68000000

IML32.dll 11.5.7r609 0x69000000

SWDir.dll 11.5.7r609 0x69200000

Browser OS DLL Address?

IE 7 Vista deployJava1.dll 0x10000000

MSVCR71.dll 7.10.3052.4 0x7c340000

IE8 Windows 7 deployJava1.dll 0x10000000

MSVCR71.dll 7.10.3052.4 0x7c340000

Expanded Chart

Secunia: DEP & ASLR In Popular 3rd party applications.PDF

ROP needs only one address
Can use LoadLibrary() to load other DLLS
Can use lookups to reference other DLLS

ASLR

MOV DWORD PTR DS:[ESI],EDI
PUSH ESI
CALL DWORD PTR DS:[<&KERNEL32.GetVersionExA>]MOV DWORD PTR DS:[ESI],EDI

PUSH ESI
CALL DWORD PTR DS:[6F62C8]

Pointer to function inside Kernel32

Heap structure flags

HeapCreate()

Default Heap Memory Protection
Heap Management

Address Value Description

00360000 Base Address

0036000C 00000002 FlagsThese Flags hold settings
such as isDebug, Exception

Raising, and Executable
Heap

Heap Flags

Name Value Description

HEAP_CREATE_ENABLE_EXECUT
E

0x00040000 All memory blocks that are
allocated from this heap allow
code execution

HEAP_GENERATE_EXCEPTIONS 0x00000004 Raise an exception to indicate
failure

HEAP_NO_SERIALIZE 0x00000001 Serialized access is not used

BASE+0x40 on Windows 7

Heap is extended to accommodate an allocation request

Default Heap Memory Protection

7C833C50 MOV EAX,DWORD PTR DS:[EAX+C]
7C833C53 AND EAX,40000
7C833C58 NEG EAX
7C833C5A SBB EAX,EAX
7C833C5C AND EAX,3C
7C833C5F ADD EAX,4
7C833C62 PUSH EAX
7C833C63 PUSH 1000
7C833C68 PUSH EBX
7C833C69 PUSH 0
7C833C6B LEA EAX,DWORD PTR SS:[EBP+14]
7C833C6E PUSH EAX
7C833C6F PUSH -1
7C833C71 CALL ntdll.ZwAllocateVirtualMemory

Load flags from heap base

Push flag for use in
allocation

If The Flag Can Be Manipulated, It Can Lead To An Executable Heap Allocation

Before flag change

Executable Heap Spray

Heap Management

Address Value

00360000

0036000C 00000002

Executable Heap Spray

After flag change Heap Management

Address Value

00360000

0036000C 00040002

Arbitrary byte write used
to set heap executable

RWE

Prevents the abuse of SEH records
/safeseh linker option

Common known weaknesses
Handler in a module not /safseh
Handler not in a loaded module
Handler on the heap

SafeSEH

EXECPTION HANDLER

EXECPTION HANDLER

STACK

...

RETURN ADDRESS

..

Ptr To Next SEH Record

Ptr To SE Handler

..

..

Ptr To Next SEH Record

Ptr To SE Handler

This is not useful, the heap is
not executable!

Lets Assume There Are
None

Not so common known weaknesses
Existing registered handlers
Mentioned by Litchfield
Dissected by Ben Nagy

SafeSEH

MSVCRT.DLL

77BC6C74 _except_handler3

77BE8E5B __CxxFrameHandler2

WS2_32.DLL

71C12699

SETUPAPI.DLL

770f0539

TAPI32.DLL

76E875F9

OLEAUT32.DLL

77D7E249

Multiple DLLS channel there
exceptions through MSVCRT

Visual C++ implementation of SEH

0x77BC6C74 _except_handler3

If we can write NULLS to
the stack

And we can guess the
stack range

And we can spray a
heap range

Then yes, we can reach
this code

Good Luck With That

0x77BC6C74 _except_handler3

77BC6CA1 MOV ESI,DWORD PTR DS:[EBX+C] ; Load SEH+C
77BC6CA4 MOV EDI,DWORD PTR DS:[EBX+8] ; Load SEH+8
77BC6CA7 PUSH EBX
77BC6CA8 CALL msvcrt.77BCA3BE ; Call validation routine

STACK

SEH-8 Ptr Stack < SEH

SEH-4 XXXXXXXX

SEH Record XXXXXXXX

Handler 77BC6C74

SEH+8 NonStack Ptr

SEH+C 00000001

Fake Record

FFFFFFFF EIP TARGET

Possible under the right conditions, but yeah.....

__CxxFrameHandler2

Well, at least it hasn’t terminated yet.

77BE8E5B MOV EAX,msvcrt.77BE8EF0
77BE8E60 JMP msvcrt.__CxxFrameHandler2 ; Call the FrameHandler

MYSQL < =5.1.41 COM_FIELD_LIST
Stack overflow
Supply a long field name as the parameter

Case Study - MYSQL

No modules to be used
No useable memory addresses
Can’t fall back to ret overwrite due to /GS

Try a longer string?
Maybe a different code path is taken

SafeSEH

Something's Different

Different AV

Different Code
Location

Memory Map

Stack

No Guard Page

Interesting
Doesn’t help us bypass SafeSEH restritions
Wonder what this other memory is?
If only we could stop the current thread from crashing

Neg EIP

Looks Like Heap Code

Heap segment
Created when heap is extended
Pointer stored in base heap

40 byte chunk contains
Heap chunk header
Segment metadata

Segment header queried
During allocation for large size
Segment queried on uncommitted memory
Will commit and insert new chunk into freelist[0]

Heap Segment Header Exploitation

Heap Management

Address Description

003E0000 Base Address

003E0058 Segments[64]

Heap Management
Address
Description
003E0000
Base Address
003E0058
Segments[64]

Heap Segment Header Exploitation
Heap Segment Header

Address Value Description

03310008 FFEEFFEE Signature

0331000C 00000000 Flags

03310010 003E0000 Heap

03310014 LargestUnCommittedRange

03310018 03310000 Base Address

0331001C 00000400 Number of pages

03310020 03310040 First Entry

03310024 03FF0371 Last Valid Entry

03310028 NumberOfUnCommittedPages

0331002C NumberOfUnCommittedRanges

03310030 003E0588 UnCommittedRanges

03310034 00000000 AllocatorBackTraceIndex

03310036 00000000 Reserved

03310038 03310040 LastEntryInSegment

40 Byte Chunk

UnCommittedRanges

Address Description

+0 Flags/# pages

+4 Chunk Address

+8 Chunk Size

Address for newly created
chunk to use

Exploit needs to setup
FirstEntry pointer
UnCommittedRange (this controls the returned address)

Heap Segment Header Exploitation

UnCommittedRangeUnCommittedRange Range Address

At next large allocation
Fake uncommittedrange used
01ACBA90 is returned
Data written to allocated buffer

More Heaps

Overwritten function pointer table in MYSQL heap

Function table accessed
EAX points to our data

EIP FTW

00446914 MOV EAX,DWORD PTR DS:[ESI]
00446916 MOV EDX,DWORD PTR DS:[EAX+4]
00446919 PUSH EDI
0044691A PUSH EBX
0044691B PUSH EBP
0044691C PUSH ECX
0044691D MOV ECX,ESI
0044691F CALL EDX

00424983 PUSH EAX
00424984 POP ESP
00424985 RETN

00401054 POP ECX
00401055 RETN

The address for
EDX

The 2nd RET
address

Take control of the
stack

Bypass DEP

Crafty stack setup

Use VirtualAlloc call from within MYSQL

Return to a JMP ESP

Profit

www.insomniasec.com

