
  

Kprobes Presentation Overview

 This talk is about how using the Linux kprobe 
kernel debugging API, may be used to subvert 
the kernels integrity by manipulating jprobes 
and kretprobes to patch the kernel.

 This material is based on a more extensive 
paper recently released in phrack.

 This talk will cover the kprobe implementation 
on a higher level than the paper.



  

Kprobe instrumentation for anti-security

 Kprobes are a native Linux kernel API that 
are enabled by default in most stock kernels.

 Kprobes ultimately rely on the debug 
registers of an architecture. X86_32 is our 
focus.

 Kprobes are a set of kernel functions that 
allow a caller to dynamically break into 
almost any routine (or instruction) without 
disruption to collect debugging information. 



  

Kprobe functions for our purpose
 register_kprobe() sets a breakpoint at the 

instruction to be probed.
 register_jprobe() sets a breakpoint at the entry 

point of a function that we want to probe, 
allowing us access to a copy of the stack 
parameters.

 register_kretprobe() replaces the return address 
of a specified function to point to trampoline 
code which sets up a handler: 

 my_handler(struct kretprobe_instance *, struct pt_regs *)

 Kretprobes (Return probes) cannot modify the 
return value-- only inspect data (And modify it)



  

Essential topics we will cover

 How we utilize kprobes to our advantage
 Basic code for intercepting a kernel function
 Kretprobe (Return probe) patching technique
 Using pointers on the copy of the jprobed 

functions stack segment.
 Jprobe implementation (High level overview)
 File hider rootkit using jprobes/kretprobes
 Detecting kprobe rootkits.
 Weaknesses and advantages of using kprobes



  

Utilizing kprobes to our advantage 1.1

 Kprobes can set a break point in the text 
segment anywhere except certain designated 
functions which have the __kprobe attribute.

 Stack values cannot be modified since we get a 
copy of the stack (And a copy of the 
instructions). 

 We CAN modify global kernel data allocated 
from the slab (Essentially global kernel data 
structures). I.E current->mm->mmap->vm_flags

 We CAN modify pointer values on the copy of 
our stack. 



  

Utilizing kprobes to our advantage 1.2

● Setting a jprobe,jprobe, which is a 'kprobe abstraction'- 
to inspect kernel function data is the first step in 
the return probe technique for kernel patchingreturn probe technique for kernel patching

● NOTE: Remember that we cannot modify the 
return value, and modification to any stack 
arguments won't matter because they are an 
allocated copy of the stack arguments. This is not 
general function hooking.



  

linux/samples/kprobes/jprobe_example.c
– A basic jprobe hook that was registered Using register_jprobe() for do_fork() 
function --
static long jdo_fork(unsigned long clone_flags, unsigned long stack_start, 
              struct pt_regs *regs, unsigned long stack_size,
              int __user *parent_tidptr, int __user *child_tidptr)
{
       
        – Here we get a copy of the stack to analyze values or modify global kernel 
–
        – data structures. jprobe_return() is imperative otherwise do_fork will fail –
        – all together.

        /* Always end with a call to jprobe_return(). */
        jprobe_return();
        return 0;
}
static struct jprobe my_jprobe = {
        .entry                  = jdo_fork,
        .kp = {
                .symbol_name    = "do_fork", /* kallsyms_lookup_name is used */
        },
};
:



  

Return probe patching technique

Our algorithm is as follows:

1. Set jprobe on kernel function, and collect any relevant stack arguments into a 
static global LKM struct of some type that meets the requirements.

2. Once the real kernel function is done executing it will have modified certain 
global data structures that we are interested in (Such as anything in task_struct).

3. After the real function modifies global data structures we can decide based on 
our saved values whether or not we want to change those global data structures 
in our return probe. So the point is, that we get to set the verdict on global data 
structures with a return probe.



  

Another explanation of return probe 
patching technique.
1. [jprobe handler for function_A] → What do we set global data too?   1. [jprobe handler for function_A] → What do we set global data too?   
2. [function_A]                               → Sets global data structures2. [function_A]                               → Sets global data structures
3. [kretprobe to patch global data structures] → Reset global data structures3. [kretprobe to patch global data structures] → Reset global data structures

So in step 1 we might check an integer serving as a flag from 
a stack argument. We save this data in a global variable 
declared in our LKM.

In step 2 global kernel data will be set based on those flags, 
which we have no control over, but lo and behold – step 3 
serves as the kretprobe we planted.

In step 3 we reset that kernel data if it suits our needs, and we 
get the final verdict.

How could we actually use techniques like this to make file 
hiding possible? Lets continue...



  

Jprobe patching combined with return 
probe patching technique.●

● In many cases we can actually modify a global data 
structure within our copy of a jprobe function in a manner 
that modifies the way the real function behaves.

● If we get the 'struct file' associated with the 'long fd''long fd' in 
sys_writesys_write, we can redirect it to /dev/null or anywhere 
else.
 

● The following execution of the real sys_write would use 
that redirected 'fd' because it is associated with 
task_struct (A global data structure). When we get ahold 
of 'current''current' it is not the one on the copy of the stack so we 
can modify it, and it will stick.

● This concept is actually applied in the file hider rootkit 
we will see in the slides that follow.

.



  

Modifying stack pointers

       – From j_filldir64, our jprobe handler where we save a pointer to d_name --
        /* 
         *  Save address to where the name of the file we want hidden 
         *  is stored so that we may nullify it in our return probe.
         */
        g_dentry.d_name_ptr = (unsigned long)(unsigned char *)dirent->d_name;
        
       – We can then modify the d_name (Or nullify it in our case) from the –
      – return probe by doing the following  –
               
                ptr = (char *)g_dentry.d_name_ptr;
                copy_to_user((char *)ptr, &null, sizeof(char));

 

● If a pointer is passed as a parameter on our copy of the 
stack, we can access that location from kernel space.
● As an example from our mini-rootkit:



  

Jprobe implementation 1.1
struct kprobe {struct kprobe {
                struct hlist_node hlist;struct hlist_node hlist;
                /* list of kprobes for multi-handler support *//* list of kprobes for multi-handler support */
                struct list_head list;struct list_head list;
                unsigned long nmissed;unsigned long nmissed;
                kprobe_opcode_t *addr; // location of probe pointkprobe_opcode_t *addr; // location of probe point
                const char *symbol_name;const char *symbol_name;
                unsigned int offset;unsigned int offset;
                kprobe_pre_handler_t pre_handler; // the handler/function kprobe_pre_handler_t pre_handler; // the handler/function 
that is called during the trap.that is called during the trap.
                kprobe_post_handler_t post_handler; // the handler that kprobe_post_handler_t post_handler; // the handler that 
does clean up                   does clean up                   
                kprobe_fault_handler_t fault_handler;kprobe_fault_handler_t fault_handler;
                kprobe_break_handler_t break_handler;kprobe_break_handler_t break_handler;
                kprobe_opcode_t opcode;kprobe_opcode_t opcode;
                struct arch_specific_insn ainsn;struct arch_specific_insn ainsn;
                u32 flags;u32 flags;
}}

A kprobe instruction trap calls the pre_handler which has a A kprobe instruction trap calls the pre_handler which has a 
prototype like this:prototype like this:

int handler_pre(struct kprobe *p, struct pt_regs *regs)int handler_pre(struct kprobe *p, struct pt_regs *regs)



  

struct jprobe {
        struct kprobe kp;
        void *entry;    /* probe handling code to jump 
to */
};

Example to hook sys_write:Example to hook sys_write:
struct jprobe jp;struct jprobe jp;
jp.kp.addr = kallsyms_lookup_name(”sys_write”);jp.kp.addr = kallsyms_lookup_name(”sys_write”);
jp.entry = (opcode_t *)my_sys_write;jp.entry = (opcode_t *)my_sys_write;

We would then call register_jprobe(&jp);register_jprobe(&jp);
What happens 

Jprobes are built upon kprobe implementation



  

Jprobe implementation 1.2
● register_jprobe() calls register_jprobes() register_jprobe() calls register_jprobes() 

-- commented snippet from register_jprobes() in -- commented snippet from register_jprobes() in 
/usr/src/linux/kernel/kprobes.c --/usr/src/linux/kernel/kprobes.c --

  /* See how jprobes utilizes kprobes? It uses the *//* See how jprobes utilizes kprobes? It uses the */
  /* pre/post handler  and sets it to a jprobe initializer*//* pre/post handler  and sets it to a jprobe initializer*/
/* function *//* function */

  jp->kp.pre_handler =  setjmp_pre_handler;     jp->kp.pre_handler =  setjmp_pre_handler;     
  jp->kp.break_handler = longjmp_break_handler;jp->kp.break_handler = longjmp_break_handler;
  ret = register_kprobe(&jp->kp);ret = register_kprobe(&jp->kp);
--



  

Jprobe implementation 1.3
● setjmp_pre_handler function is assigned to the struct 
kprobe's pre_handler function pointerpre_handler function pointer for the jprobes 
implementation.

● As seen in the previous slide, register_jprobe() 
ultimately ends up with register_kprobe() and kprobe 
pre_handler is assigned to a function that sets up jprobes 
by 

1. saving the register state
2. making a copy of the stack arguments 
3. Set %eip to the jprobe handler for the function 

(jp.entry) which must have the exact same parameter 
layout, return value type, and compiler specifications 
(Such as asmlinkage)



  

Jprobe implementation 1.4

● jprobe_return() is at the end of a jprobe function 
which invokes The kprobes post handler.

● The post handler for jprobes essentially restores 
the stack and returns eip back to the original 
function that is being probed.

● The post handler is longjmp_break_handler() which
restores the registers and stack like so:

 *regs = kcb->jprobe_saved_regs;
  memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
                  kcb->jprobes_stack,
                  MIN_STACK_SIZE(kcb->jprobe_saved_sp));



  

Kprobe rootkit file hider features

1. LKM Module

2. Includes file hiding mechanism

3. Does not allow admin to disable kprobes
With 'echo 0 > /sys/kernel/debug/kprobes/enabled'

4. Probed functions do not show up in
/sys/kernel/debug/kprobes/list

5. Uses jprobes and kretprobes only.



  

Rootkit approach

1. (In jprobe) Save the dirent d_name pointer from the copy of the stack args in 
LKM global g_dentry.dptr.

3. In our return probe we close the original file descriptor, and copy_to_user the null 
byte for the file that we want hidden only if g_dentry.file_hide == 1; So the file name
Is '\0' Which shows up as nothing however...

2. note: ls does a stat on '\0' which results in a stderr message that we must rid by 
redirecting the file descriptor passed to sys_write to /dev/null, we do sanity
Checks such as making sure current->comm is 'ls' first etc. We can modify anything
In the current task_struct pointer, and it will persist even after the jprobe hook.

4. (MITIGATION) Our LKM code contains the inode numbers for
/sys/kernel/debug/kprobes/list
/sys/kernel/debug/kprobes/enabled
Attempts to disable kprobes by writing 0 into 'enabled' will fail. We do some checks 
in our sys_write jprobe and redirect the 0 to /dev/null if necessary. This makes our 
rootkit unable to be disabled unless the module is removed. If a sys_write is 
performed where its 'struct' file' fd pertains to the 'list' inode and the sys_write 
String matches a symbol we have registered, we direct that to null as well so that
It does that suspicion does it arise when filldir64 and sys_write show up in the kprobe
List within sysfs.



  

Rootkit example
# ls
jkit1.c   jkit1.mod.c  jkit1.o  modules.order   test1  test3
jkit1.ko  jkit1.mod.o  Makefile Module.symvers  test2
# insmod jkit1.ko
# ls
 jkit1.c  jkit1.ko  jkit1.mod.c  jkit1.mod.o  jkit1.o Makefile  
modules.order  Module.symvers

# echo 0 > /sys/kernel/debug/kprobes/enabled
# ls
 jkit1.c  jkit1.ko  jkit1.mod.c  jkit1.mod.o jkit1.o Makefile

# cat /sys/kernel/debug/kprobes/list
# 



  

Rootkit Detection Approach 1.1

● Remember a breakpoint will be inserted at the 
first byte of a kprobed function.

● The kprobed functions will either be unlinked 
from the sysfs kprobe kobject, or (As in our case) 
not visible via sys_write in 
/sys/kernel/debug/kprobes/list



  

Rootkit detection approach 1.2

A tool such as 'kmemstat' which is a tool I 
designed for 2.6.22 and above kernels uses the 
following steps.
1. Decompress vmlinuz 
2. Use the section headers to determine .text 
and .rodata 
2. Use the section headers to determine 
.altinstructions
3. Parse and apply alternative instructions 
(Runtime memory barrier patches).
4. Compare patched vmlinux text to kmem text.



  

Rootkit detection approach 1.3
●

# ./kmemstat -k vmlinux -M -v -s sys_write# ./kmemstat -k vmlinux -M -v -s sys_write
[sys_write <0xc0218f60>] is 1150816 bytes into the text [sys_write <0xc0218f60>] is 1150816 bytes into the text 

segment, and ends at 0xc0218fcfsegment, and ends at 0xc0218fcf

[+] Start vaddr: 0xc0218f60 End Vaddr: 0xc0218fcf [+] Start vaddr: 0xc0218f60 End Vaddr: 0xc0218fcf 
[0xc0218f60] Bytes do not match: [0xc0218f60] Bytes do not match: 
[Original] x55 [Modified] xcc[Original] x55 [Modified] xcc

● So we can see a breakpoint has been set at 
sys_write+0x0. 
● cat /sys/kernel/debug/kprobes/list 
●If you do not see sys_write+0x0 then it is almost
certain to be a kprobe rootkit. The
The same would apply to filldir64+0x0 since we
set a jprobe on it. 



  

Weaknesses/advantages

●The strength in using kprobes for anti-security is 
that if done correctly can be easily overlooked by 
most rootkit detection tools.

●The weakness is that the limitations upon the 
existing functions abstracted around kprobes 
make writing certain types of patches difficult.



  

Text poke 1.2

static void disable_wp(void)
{
        unsigned int cr0_value;
        
        asm volatile ("movl %%cr0, %0" : "=r" (cr0_value));
        
        /* Disable WP */
        cr0_value &= ~(1 << 16);
        
        asm volatile ("movl %0, %%cr0" :: "r" (cr0_value));

}



  

Text poke 1.2

static void enable_wp(void)
{
        unsigned int cr0_value;

        asm volatile ("movl %%cr0, %0" : "=r" (cr0_value));

        /* Enable WP */
        cr0_value |= (1 << 16);

        asm volatile ("movl %0, %%cr0" :: "r" (cr0_value));

}



  

Text poke example

The following code is a trivial example of modifying the
Syscall table which resides in .rodata (text segment).

        disable_wp();
        sys_call_table[__NR_write] = (void *)n_sys_write;
        enable_wp(); 



  

How Linux patches itself

● Many developers stay away from kernel function 
trampolines because of the non-atomic memcpy

● From arch/x86/kernel/altnernative.c

 /* text_poke - Update instructions on a live kernel.
 * * Note: Must be called under text_mutex.
 */
void *__kprobes text_poke(void *addr, const void *opcode, 

size_t len)
. 



  

Questions or coments?

Questions or comments welcome
My email address is 
ryan@innosecc.com

Thank you for attending my talk and I'm 
happy to discuss the techniques in more 

detail.

mailto:ryan@innosecc.com
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